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Abstract 

In former papers a representation of the quantum Fermi and para-Fermi fields was pro- 
posed. This representation is such that the only basic quantum entities are Bose quantum 
fields. In this paper we show several possibilities of application: (i) to lower the number 
of "elementary" particles; (ii) to describe as separate states of a fundamental particle 
other particles that presently are considered as different, and to induce an ordering 
among them; (iii) to obtain relations among the quantum numbers of those particles; 
(iv) to obtain a physical picture of some unstable particles. This article is concerned 
with the physical interpretation of the formalism, and some of the statements that are 
contained here have a conjectural character. 

1. Introduction 

In a previous paper (K~ilnay, 1975), hereafter  called (A), we simplified and 
generalized the paper K~ilnay et al. (1973), where it was shown that  quantum 
Fermi (and para-Fermi) fields can be described in terms o f  quantum Bose fields 
plus certain c-number coefficients. Briefly, we shall call it the Bose representa- 
tion o f  Fermions. It is well understood, however, that the c-number coefficients 
can be compacted into entities that  can be interpreted as classical (in the sense 
of  c-number) fields of  mixed spinor-tensor indices. See Section 2 of  paper (A). 
In a subsequent paper (Kfilnay and Mac Cotrina, 1976), hereafter called (B), 
we retrieved more or thodox expressions o f  the Bose described Fermi physical 
variables, an or thodox form that  was lost in the previous work. [Cf. (B) and 
the Appendix  of  Kfilnay et al. (1973).] Physical variables are discussed in 
Kglnay and Kademova (1975a) and the transformation laws in K~lnay and 
Kademova (1975b). A specific model  is given in K~ilnay (1977) and a review 
and discussion in Kfilnay (1978). 
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Although not claiming full mathematical rigor, we consider that the results 
of the above-mentioned papers stand on a reasonably sound basis. They mainly 
consist of theorems proved according to the standards of theoretical physics. 
The situation may be quite different as regards the physical interpretation of 
the Bose representation of fermions, since it partially involves conjectures 
and plausibility arguments. That is why we separated the physical interpre- 
tation and the discussion of possible applications of the Bose representation 
of fermions from the development of the formalism. Papers (A) and (B) were 
devoted to such developments, whereas the present article discusses the 
physical possibilities that the formalism suggests. We did this in order to 
ensure the validity of papers (A) and (B) in case experiments disprove the 
physical assumptions herewith expressed. In that case, the physical interpre- 
tation of the Bose representation of fermions could be improved, without 
invalidating the formalism of papers (A) and 03). 

We have hopes that some of the ideas we shall express can be fruitfully 
applied to any of the branches of physics (such as solid state or nuclear 
physics) that use quantum theory fields. When we speak of elementary 
particles, we shall refer to the "elementary" particles of any specific branch 
of physics, unless the contrary is explicitly stated. However, we believe that 
the most fundamental applications of the Bose representation of fermions 
can be done in high-energy physics. 

Each of the following sections will be devoted to a different physical 
aspect of the theory, though some of those aspects have some mutual relation- 
ships. Different degrees of plausibility will be found in these parts of the paper. 

2. On the Total Number of "Elementary "Particles 

2.1 Fermions. In K~lnay et aL (1973) 1 and in Section 3 of (A) 2 we proved 
that there exist functions of the Bose quantum fields that have all the 
properties of the quantum Fermi annihilation and creation operators when 
they act on the one-boson subspace ~l:  We reproduce equation (1.5a) of (A) 
for the Fermi annihilation field f~(z)3: 

R 
f~(z): ~ d3x ~ d3x ' Z F~((z,x,x')b~(x)b~'(x') (2.1a) 

and from equation (1.5b) that of the Fermi creation field 

R 
f?(z)= f d3x ~ d3x ' ~ F~+~'(z,x,x')b~(x)b~'(x ') (2.18) 

~'(=t 

The subspace M1 is the Bose representation of the space o~1 of all possible 
Fermi states. This is the Bose representation of fermions. As the mathematics 
of the Bose representation of fermions is isomorphic to that of the standard 

1 Fock representation of the Fermi (and para-Fermi) commutation relations. 
2 Fock and non-Fock cases. 
3 We use the same notation as in papers (A) and (B). 
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quantum theory of fermions, no mathematical or physical property of fermions 
can be lost. For example, we have shown explicitly in Kfilnay et al. (1973) and 
in paper (A) that the Pauli principle is satisfied by the Bose constructed 
fermions in spite of not being satisfied by the underlying Bose field. 

We have stated K~lnay et al., 19731; Section 3 of paper (A) z that the stan- 
dard quantum field theory of fermions is isomorphic to the Bose representation 
of fermions. Then both theories can be equivalently used in physics, ttowever, 
in the second theory no quantum Fermi field is needed in the set of the 
elementary particles if quantum Bose fields are available. [Suitable sets of 
c numbers F~fV(z, x, x') are needed, see Section 2 of (A).] As in a quantum 
field theory, the fundamental particles are represented by quantum creation 
and annihilation fields. As no Fermi fields are needed, it is clear that in a 
theory that contains quantum Bose and Fermi systems the Fermi systems 
must not be considered as elementary ones. These are derived in terms of the 
quantum bosons and of the c numbers b}~-~,(z, x, x'). We conclude that 
quantum fem~ions can be ruled out as microscopic elementary particles. 

Remark 2.1.1. In the appendix of K~ilnay et al. (1973) we have shown how 
to construct, in terms of a quantum Bose field, a Bose Hamiltonian 

4 R 

x ( - iVx  .a+ m~)~,F~'f'" f,,(z, x", x'") 

+ r vt +t  t i t  x b~(x)b~,(x )b~,,(x )b~-(x ) (2.2) 

such that the Bose constructed Fermi field evolves in time according to Dirac's 
equation for the electron. [In K~ilnay and Kademova (1975a) this procedure 
was extended for arbitrary physical variables. In paper (B) the form of those 
variables was simplified.[ The difficulty is that (2.2) has not the form of a 
standard Bose Hamiltonian. It could be suspected that the Bose Hamiltonian 
(2.2) needed for the time evolution of the Fermi field could be inconsistent 
with the original time evolution of the Bose field. The answer to the problem 
is derived from the study of the physical variables of bosons and fermions 
given in K~lnay and Kademova (1975a) and summarized here. In order to fix 
ideas we shall consider as a first example (cf. K~ilnay and Kademova 1975a) 
the Dirac electron represented in Bose terms as in the Appendix of K~itnay 
et al. (1973). Let us call He~ the Bose representation (2.2) of the Hamiltonian 
of the quantum electron, and H e the Hamiltonian of the original quantum 
Bose field. There is no conflict between the time evolutions of bosons and 
fermions because there is no need for He to equaI H ~. In fact, we have shown 
in Section 2 of (A)  that the c number F.~-~-,(z, x, x ' )  used, in addition to the 
quantum Bose fields to represent the quantum Fermi fields [equation (2.1a)], 
can be interpreted as classical fields; and as such, they can (or perhaps, they 
shouM) carry one part o f  the energy. On the other hand, there may be an 
interaction energy between the quantum bosons and the classical fields, which 
is a further reason for the total energy H e  being different from the energy H e 
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of the Bose system. Then generally H~¢  H e but, whatever the time evolution 
of the quantum Bose field b~-(x) in equation (2.2), the time evolution given 
by Dirac's equation is obtained for the quantum electron (see the proof in 
K~lnay and Kademova, 1975a, b). 

Remark 2. t.2. We have a similar situation concerning angular momentum 
(cL K~ilnay and Kademova, 1975a, b). Let us consider equation (2.1a): The 
Bose field bf(x) carrying integer spin belongs to a tensor representation of 
the rotation group. (The tensor index ~" may be a set of indices fl,  f2 . . . . .  fa.) 
However, the tensor indices ~', f '  in equation (2.1 a) are contracted with the  
tensor indices f, f '  of classical field/*)~,(z, x, x') so that finally the quantum 
Fermi field f~(z) transforms according to the ~ dependence of the classical 
field F~.~.,(z, x, x'). It is sufficient that the classical field has ~" and ~" as suit- 
able tensor and ~ spinor indices for having the quantum Fermi field f~(4 z) 
transformed according to a spinor representation of the rotation group 
This means that the quantum generators of rotations (i.e., the angular 
momentum operators) of the quantum Bose and Fermi fields are not 
equal. This is the correct result: The Bose representation j~(b, b +) of the 
angular momentum of the fermion cannot coincide with the angular momen- 
tum j~(b, b ÷) of the boson because the fermion has half-integral eigenvalues 
while those of the latter are always integral. Within this scheme of ideas the 
problem is considered in K~lnay and Kademova (1975b). Incidentally, notice 
that the classical field has its own transformation laws under rotation, which 
means that it carries spin. This adds further support to the idea that the 
classical field is a physical entity. They are carriers of angular momentum, 
and (cf. previous Remark) of energy. 

Remark 2.1.3. We have seen that from the Bose representation of fermions 
developed in the previous papers it results that quantum fermions can be ruled 
out as microscopic elementary particles. If the point of view [we call it (i)] 
that the F~f~'(z, x, x') be only c-number coefficients in the construction of 
wave packets is adopted [see Section 2 of (A)], then the only fundamental 
entities are the quantum bosons. If, on the other hand [point of view (ii)], 
one considers the F~ff,(z, x, x') as classical fields [see again Section 2 of (A)], 
then it could be said that the quantum fermions are constructed in terms of 
quantum bosons and classical fields. In both cases the quantum fermions can 
be expressed in terms of more elementary entities. As the Bose representation 
of fermions is shown by theorems proven according to the standards of 
theoretical physics (see references), the statement that quantum fermions 
can always be described as nonelementary entities has a sound basis. This 
certainty contrasts with that of other statements we shall make in the re- 
mainder of this paper, supported by less conclusive arguments. To begin with, 
if the point of view (ii) is correct, then one should expect that some future 
experiment could detect those ~ classical fields. One could conjecture, although 
it would not be essential, that those dassical fields correspond to some up-to- 

4We remark on the strange fact that by appropriately changing the F~fg-(z, x, x'), the 
Bose field b~-(x) may be changed without modifying the quantum Fermi system. 
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now undetected (because of the lack of a suitable interaction knowledge) 
macroscopic field. 

2.2 Parafermions. Parafields are the fields obeying Green's (1953) com- 
mutation relations. Among the work done on parafields we would like to 
quote the paper by Greenberg and Messiah (1965). Several models of physical 
system parafields have been used as in the quark model (Greenberg, 1964), 
the nuclear pairing force model of a single ] shell (Cusson, 1969), and the spin- 
½ oscillators with spin-orbit interaction (Cusson, 1969). However, the existence 
of paraparticles among the known fundamental particles of high-energy physics 
was questioned because of some selection rules that would not allow for their 
existence in nature. See, e.g. Greenberg and Messiah (1965). However, these 
selection rules strongly depend upon some assumed hypotheses, which (even 
if likely) may not be right (Feshbach and Tomljanovich, 1967). Moreover, 
for most particles no direct experimental determination of the statistics has 
been made (Feshbach and Toinljanovich, t967; Perkins, 1972b). Therefore, 
we shall not exclude the possibility that some of  the observed "elementary" 
particles o f  high-energy physics are parafermions. Other authors also consider 
parafields in elementary particle physics, for example Green (I 972) and 
Scharfstein (1972, 1973). 

For at least the majority of "elementary" particles in high-energy physics, 
there has been no publicized experiment performed that involves a number 
of particles to give a direct knowledge of statistics. The statistics are generally 
obtained by measuring spin and using the connection between spin and 
statistics. However, if we consider for example a spin -1 particle, it only 
follows that the particle is a fermion ifboson and fermion are the only 
allowed cases. As a matter of fact, that connection does not state that a 
spin-½ particle must be a fermion. It only lays that a spin-½ particle cannot be 
a boson. Thus, there is, in principle, place for the parapartictes. 

Perkins (1972b)has shown that even with the photon that is the boson for 
which no example concerning statistics is available, the statistics determination 
is not clear. In fact, "the only direct evidence of the statistics of the photon 
(black-body-radiation experiments) can be satisfied" (Perkins, 1972b) for at 
least two different statistics. Most specifically, Perkins (1972a) has shown 
that there exists at least one new statistics (which is not Bose and perhaps 
not even para) such that the photon distribution "is similar enough to Planck's 
distribution to satisfy experimental results" (Perkins, 1972a) within the ex- 
perimental error. So that even for the photon we are not completely sure of 
the statistics. And for the photon we certainly have a lot of experiments 
involving many particles! If even the statistics of the photon was not defi- 
nitely proven by experiments, why then exclude the possibility that some 
resonances might be of paraparticles? 

On the other hand, many-boson states certainly are observed in nature, 
and, because of the work done in Kfilnay et al. (1973) and in paper (A), s we 

5 We shali assume in what follows a Fock representation of the Fermi and para-Fermi 
commutation relation; cf. Section 4 of (A). 
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deduce that they can be differently described as para-Fermi states. [See Section 
4 of (A).] As a consequence, we deduce from the formalism of the paper by 
K~lnay et al. (1973) and of (A) that para-Fermi states exist in nature. 

Going back to high-energy physics, we shall assume that [paying if 
necessary the price that some likely condition such as paralocality (Green- 
berg and Messiah, 1965)may be violated] some of the observed "elementary" 
particles could, in principle, be parafermions. 

Then, in the same form as in Section 2.1, where we found that the Fermi 
particles can be retired from the set of the true quantum elementary particles, 
we now deduce from the formalism of the previous papers that those "elemen- 
tary" particles that are parafermions can also be retired from the set of the 
true quantum elementary particles. In fact it is shown [K~lnay et al. 1973; and 
in Section 4 of paper (A)] that when the Bose constructed fields (2.1) act 
on the whole Bose state vector space ~ they satisfy Green's (1953) commuta- 
tion relations characteristic of para-Fermi fields. From now on, the argument 
is similar to that of Section 2.1 of the present paper, and we shall not repeat 
it here. 

Moreover, in paper (A) we gave the necessary and sufficient conditions for 
obtaining in the subspace ~1 a Fock representation of the Fermi algebra, and it 
is proven that in that case the same fields (2.1) act on the p-boson states sub- 
space ~p as'an irreducible Fock representation of the para-Fermi algebra cor- 
responding to an order p (Green, 1953; Greenberg and Messiah, 1965) of 
parastatistics. Thus, the para-Fermi particles can also be ruled out as elemen- 
tary" ones if they are additionally required to correspond to a specific order 
of parastatistics in a Fock representation. 

3. Different States vs. D(fferent Particles 

Let us assume that in nature there exist a fermion A1 and a parafermion 
Ap of order p of parastatistics s and also a boson B. According to the previous 
discussion we can rule out A 1 and Ap as true elementary particles describing 
their quantum fields in terms of the Bose field bf(x) of B according to 
equations (1.1). We then represent the state vector space of A1 by the sub- 
space ~ of the one-boson states, and the state vector space of Ap by the 
subspace Np of the p-boson states of B. 

In the traditional picture of the facts, the particles A1, Ap, and B are viewed 
as three different particles. In the Bose description of fermions and para- 
fermions the state of one A 1 particle is a linear superposition of states like the 
(2.6) of (A), i.e. (see footnote 3 above), 

ff(z) tO> 
R 

f d 3x f d3x'F-~ff'(z, x, x')(9~"(x')b~(x)l 0)~C N1 (3.1) 

the state of one Ap particle is a linear superposition of the states obtained by 
applying the para-fermi creation field (1. lb) to the para-Fermi vacuum [see (4.2) 
of (A)] i.e., applying (1.1b) to 
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R 

io~l= fdaXl ' . ' fd3xp ~ (grl(x1)'"(grp(Xp)b~l(xl)'"b~p(Xp)lO)~E~p 
~--- ~p=l (3.2) 

it follows that the state of one Ap particle is (as the para-Fermi vacuum t0) ~1) 
also a state of ~p;  the state of one B particle is a linear superposition of 

b~(x)[0) ~ (3.3) 

the state space of an arbitrary number of Ap particles (p fixed) coincides with 
Np and it is spanned by the basis [cf. K~lnay et al., 1973; and paper (A)] 

I - 1 / 2  + (n.) b~l(x1)...b~p(Xp)lO)NE Np (3.4) 

finally, the set of an arbitrary number of Ap particles (variable p) coincides 
with the space 

of all Bose states of the B bosom 
This means that if the experimental conditions are such that if we focus our 

attention on (i) the one-boson states, then the Bose system allows a description 
in which it looks like a Fermi system, or (ii) on the p-boson states, then the 
Bose system allows a description in which it looks like a para-Fermi system 
of order p of parastatistics, or (iii) on arbitrary Bose states, then the more 
natural (but not unique) view is to consider it as a Bose system. 

We point out that in the same way that the introduction of the isospin 
allowed physicists to see protons and neutrons as different states of one and 
the same particle, the Bose description of fermions and parafermions offers 
the possibility of seeing the particles A~ and Ap as different states of one and 
the same particle: a boson. 

However, the above idea looks artificial (though logically possible) if onIy 
the one-boson and the p-boson states (with fixed p) correspond to existing 
particles A1 and Ap. A logically unnecessary, but very natural, prediction of 
the theory is that there exists in nature a numerable set of particles A1, A 2 , . . . ,  
Ap, Ap+ 1 . . . .  corresponding to the different subspaces ~p of the Bose system. 
The increasing number of  "elementary" particles discovered in high-energy 
physics suggests, though it does not prove, that this may be right. 

To sum up: The Bose description of  fermions and parafermions offers a 
possibility of  a more unified description of  the so-called "elementary particles, '" 
even permitting their subsequent classification according to the different Bose 
subspaees. Although we are simplifying the discussion of these sections by 
restricting ourselves to the Fock representations (cf. footnote 5 above), one 
should also consider non-Fock representations, which allow for greater free- 
dom and possibilities (Govorkov, 1973). 

4. Possibility of  Relationships among Quantum Numbers 
Let us consider a Bose description in terms of a boson B of the fermion AI 

and of the parafermions A2, A3, , . .  as in the last section. We shall add to the 
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formalism described in papers (A) and (B) an assumption, and shall explore 
its consequences. 

Assumption 4.1. Let us choose a given type of physical variable ~Z (e.g., the 
Hamiltonian). Then the operators gZg~, ~2~2 . . . . .  £2sp . . . .  that represent this 
variable £2 for the different particles A1, A2 . . . . .  A p  . . . .  are all equal when 
represented in terms of B: 

£2~,(b, b +) = £2~2 (b, b +) . . . .  - £2~ (b, b +) (4.1) 

where (Kfilnay and Kademova, 1975a) 

~Mi(b, b +) :- ~'~yi[f(b, b+),f+(b, b*)] (4.2) 

Now let us suppose that we have sufficient experimental information con- 
cerning, e.g., A 3 for having a good candidate for g2~a. If  Assumption 4.1 is 
right, then by looking for the eigenvalues of g2~a (b, b +) on the subspaces 
~1 and ~¢2 we can predict the values of ~ for, respectively, the particles A 1 
and A 2. (Notice that if conversely one starts from A1, one is not sure of the 
operators [2~= and g2~ because to a good £2~ one can always add an 
operator 61 such that 61~ 1 = 0, 81°d 2 4= 0, 6t~3 4= 0. [See, e.g., the operator 
~1 considered in Section 2 of paper (B), which does not alter the eigenvalues 
of ~2~, in ~1, but which may alter them in ~2 and ~3-] 

Thus, Assumption 4. I offers, i f  correct, a possibility o f  predicting eigen- 
values o f  a variable concerning one particle, by using information obtained 
from another particle. 

Moreover, the eigenvalues of an operator in different subspaces are usually 
related by recurrence formulas (example: the calculations of several energy 
spectra in elementary quantum mechanics). Then, the possibility o f  obtaining 
relations among eigenvalues arises. We are thinking on analogs of perhaps the 
mass formulas. As an example, we computed in K~lnay (1977) a simple 
model of the Bose representation of fermions: The energy eigenvalues of 
the parafermions are, in this model, linear combinations of that of the 
fermions. 

As a next step one would be tempted to generalize Assumption 4.1 by 
imposing that also the ~2 operator (~2~(b, b ÷) for the B particle) be identical 
to ~.~ (b, b+). This may perhaps happen in certain cases, but not in general. 
In fact, because of Remark 2.1.1 it would be exceptional to have £2~ = ~2~ 
when £2 is the energy, and because of Remark 2.1.2 it is impossible to have 
£2 ~ = f2~ when £2 is a component of the angular momentum. 

5. Unstable Particles 

Let us now consider a different possibility: The Hat~tonian H a of the 
underlying Bose system (in terms of which Fermi and para-Fermi systems 
are described) does not commute with the Bose particle number operator. 
Therefore, if the Bose description of a fermion [such as that described in 
Section 3 of (A)] applies at a certain instant, then at a later stage it will no 
longer be correct. According to Section 4 of (A) the particle will be looked 
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upon in the future as a parafermion with a certain probability for each 
order of parastatistics. The reason for this is that at the initial time when 
the system was looked upon as a fermion, this was because the state belonged 
to the one-boson subspace N'I. In the future the state will generally still have 
a nonzero component in the original subspace ~1; however, this component 
will usually be smaller and smaller as time evolves. The conclusion is the 
following: What we have is a picture of an unstable fermion resulting from 
the fact that initially the particle was a particular fermion; however, as time 
goes by the probability of changing from the original fermion to another 
particle becomes very high. Thus, the Bose description o f  fermions and para- 
fermions offers a possible geometrical picture as well as an eventual physical 
understanding o f  Fermi (and similarly para-Fermi) unstable particles. 
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